MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming
نویسنده
چکیده
Probabilistic Logic Programming is receiving an increasing attention for its ability to model domains with complex and uncertain relations among entities. In this paper we concentrate on the problem of approximate inference in probabilistic logic programming languages based on the distribution semantics. A successful approximate approach is based on Monte Carlo sampling, that consists in verifying the truth of the query in a normal program sampled from the probabilistic program. The ProbLog system includes such an algorithm and so does the cplint suite. In this paper we propose an approach for Monte Carlo inference that is based on a program transformation that translates a probabilistic program into a normal program to which the query can be posed. In the transformation, auxiliary atoms are added to the body of rules for performing sampling and checking for the consistency of the sample. The current sample is stored in the internal database of the Yap Prolog engine. The resulting algorithm, called MCINTYRE for Monte Carlo INference wiTh Yap REcord, is evaluated on various problems: biological networks, artificial datasets and a hidden Markov model. MCINTYRE is compared with the Monte Carlo algorithms of ProbLog and cplint and with the exact inference of the PITA system. The results show that MCINTYRE is faster than the other Monte Carlo algorithms.
منابع مشابه
MCINTYRE: A Monte Carlo System for Probabilistic Logic Programming
Probabilistic Logic Programming is receiving an increasing attention for its ability to model domains with complex and uncertain relations among entities. In this paper we concentrate on the problem of approximate inference in probabilistic logic programming languages based on the distribution semantics. A successful approximate approach is based on Monte Carlo sampling, that consists in verify...
متن کاملMCMC Estimation of Conditional Probabilities in Probabilistic Programming Languages
Probabilistic logic programming languages are powerful formalisms that can model complex problems where it is necessary to represent both structure and uncertainty. Using exact inference methods to compute conditional probabilities in these languages is often intractable so approximate inference techniques are necessary. This paper proposes a Markov Chain Monte Carlo algorithm for estimating co...
متن کاملJust Add Weights: Markov Logic for the Semantic Web
In recent years, it has become increasingly clear that the vision of the Semantic Web requires uncertain reasoning over rich, firstorder representations. Markov logic brings the power of probabilistic modeling to first-order logic by attaching weights to logical formulas and viewing them as templates for features of Markov networks. This gives natural probabilistic semantics to uncertain or eve...
متن کاملHybrid Fuzzy Monte Carlo and Logic Programming Model for Distribution Network Reconfiguration in the Presence of Outages
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system c...
متن کاملProbabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation
Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011